GHG Emissions Inventories

The Case for an Overhaul

15th June 2022

Dr Dominic Hogg

Waste – UK Incineration (fossil CO₂ only)

The Issue

Moving this	From	То	Effe Was Emi	ct on ste ssions	E I E	Effe PPL Emis	ct on J ssions	Effect on Energy Emissions
Aluminium	Landfill	Recycling		0			-10.0	-
Plastic	Landfill	Recycling		0			-2.5	-
Plastic	Landfill	Incineration		0			-	+2.5
Plastic	Incineration	Recycling		0			-2.5	-2.5

Source: Equanimator (figures are approximate)

Note: Negative numbers denote emissions reduction, positive numbers denote increased emissions

The Issue

	Primary production	Secondary production	Scenario description	t CO ₂ eq.
Global impact	5 tonnes CO ₂ eq.	1 tonne CO ₂ eq.	ACTUAL GLOBAL IMPACT	-4
Inventory impact	Domestic	Overseas	Primary Production Increases Exports to Compensate for Reduced Domestic Demand	0
	Domestic	Overseas	Primary Production Falls in Line with Reduced Domestic Demand; Secondary re-imported	-5
	Overseas	Domestic	Secondary Production Increases in Line with Increased Availability of Secondary Material	+1
	Overseas	Domestic	Secondary Producer Reduces Demand for Imported Recycled Material	0
	Domestic	Domestic	Demand Switches from Primary Materials (declines) to Secondary Materials (increases)	-4
	Domestic	Domestic	Primary Production Remains Constant as Secondary Production Increases (one or other may export more at margin)	+1
	Domestic	Domestic	Primary Production Remains Constant and Secondary Production Remains Constant (reduced import of secondary raw material)	0
	Domestic	Domestic	Primary Production Falls and Secondary Production Remains Constant (reduced import of secondary raw material)	-5

Note: Negative numbers denote emissions reduction, positive numbers denote increased emissions

Possible approach to accounting (if not directly captured under soil C)

OM concentration in the soil

Why not report 'incineration' (and AD) under 'waste' (whether or not there is energy generated)?

Why not use memorandum items to ensure the effect of better waste management is reflected in the 'waste' section (even if secondary material is exported)?

If soil C build-up is not captured under existing measurement protocols, then why not use the 'initially sequestered, but then emitted' approach?

The Bigger Picture

'Waste' gives us a window onto wider problems

Move away from GWP100 to a metric that a) reflects impact and b) is not affected by arbitrary time period

 Reflect properly the impact of short- and long-lived climate pollutants (how else can we know when we've reached stopped planetary warming?)

Stop pretending non-fossil CO₂ doesn't warm the planet (account for all CO₂)

• Time matters, and we should include all sources and sinks

Move to a consumption basis

- Minimise the extent to which 'meeting an inventory-based' target is inconsistent with addressing the problem
- Basis for targets is more aligned with principles of climate justice

Thanks

dominic@dominichogg.com

Born at 0.2 degrees C above 1800 temperature levels....