Mobile Pipeline[®] solutions for biomethane

X-STORE

Filippo Munna, Sales Director EMEAA June 15, 2022

840 BCM

potential global biomethane

34 BCM

developed global biomethane

Our vision CLEAN AIR EVERYWHERE

Our purpose **DRIVING ENERGY TRANSFORMATION**

Our values INTEGRITY & DRIVE

About Hexagon Agility

Vertically Integrated

Designing, developing, manufacturing and servicing

Our Solutions

Clean vehicle solutions and gas transportation

Market Leader

Natural gas fuel systems & cylinders in North America

70,000+

commercial vehicles on the road

1,800 modules

worldwide

10 Locations

worldwide

700+

employees

Wholly-owned subsidiary of Hexagon Composites ASA (OSLO: HEX)

25% owned by Mitsui – strong profitability and capital resources

Biomethane sources

European energy supply in 2018

 Other includes geothermal, solar, wind, tide/wave/ocean, heat and other sources, 2. Liquid and solid biofuels, 3. Considers all biomass for either bio-gas or bio-methane production, 2018 figures excluding RNG, 4. Additional potential for RNG not included since it is not realized today

Source: IEA Key World Energy Statistics 2020

5 EJ

Total biomethane potential including current biomethane supply (0.8 EJ) and additional untapped potential for biomethane (4.2 EJ)

13%

total biomethane potential of energy supply in Europe

RNG from manure is the only energy carrier with negative CO_{2-eq} emission potential

Well-to-wheel CO_{2-eq} emissions, in g/km for class 7 truck¹

1. Reference vehicle 18 t rigid truck, Mercedes-Benz Actros, 7.7 liter displacement, 200 kW, 1,100 NM, average payload 65% – diesel fuel consumption averaged based on web fleet, BEV and FCEV energy demand synthesized from various publications considering driving cycle, efficiency improvement and payload correction;

2. RED II, Annex VI, published 21.12.2018;

3. JEC Well-to-Wheels Report v5, 2020 - synthetics based on pathways with electricity and CO₂ from renewables;

4. Considering well-to-wheel emissions of CO2- equivalent omitted

Source: 3rd party consultant

RNG usage **reduces global warming by capturing methane** otherwise emitted to the atmosphere.

Depending on biomass source **RNG has an 80-200% reduction in CO_{2-eq} emissions** on a well-towheel basis

The basics of Mobile Pipeline[®]

The module is filled with low carbon RNG at the production site

Empty module returns to fill site

How it works

Full module travels to the injection site

Module is offloaded to the pipeline

Mobile Pipeline enables safe transport of CNG and RNG (biomethane)

Mobile Pipeline serving biogas facilities in Europe and US

Key takeaways

16%

total biomethane potential in Europe is developed today Repower Europe demands more biomethane

We solve the infrastructure problem

Let's get started.

US and EU regulators consider manure to be the most GHG emission saving biomethane raw material¹

			Savings of
Range	Average US CARB ¹	Default value EU ²	fossil diesel ³ , in g
Vell-to-wl	neel greenhouse ga	CO _{2-eq} /MJ (%)	

Well-to-wheel greenhouse gas emissions (g CO_{2-eq}/MJ)

1. Based on raw data from CARB (2020a), modified by WRI (World Resources Institute),

- 2. REDII Annex V, VI,
- 3. Range build using average values in US and EU,
- 4. EU n/a, similar value than landfill and US value for wastewater expected

CO _{2-eq} /MJ (%)
Baseline: 94
(100%)

Fossil natural gas 5-20 (5%-21%)

biomethane from landfill was	t 45-80
	(48%-85%)

biomethane from wastewater⁴ ~ 65 (69%)

biomethane from manure 190-400 (202%-426%)

Key takeaways

biomethane from landfill, wastewater and manure save greenhouse gas (GHG) emissions compared to fossil diesel

Both in publications of US and EU regulators, manure has negative GHG emissions while landfill and wastewater have positive yet small GHG emissions

biomethane from manure avoids more emissions than it generates, leading to a net-negative GHG emission intensity

biomethane from landfill waste and wastewater also with significant GHG emission reduction compared to fossil diesel of roughly -70 g/MJ

